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Abstract
We present a general approach to the study of synchrony in networks of weakly
nonlinear systems described by singularly perturbed equations of the type
x ′′ + x + εf (x, x ′) = 0. By performing a perturbative calculation based
on normal-form theory we analytically obtain an O(ε) approximation to the
Floquet multipliers that determine the stability of the synchronous solution.
The technique allows us to prove and generalize recent results obtained using
heuristic approaches, as well as reveal the structure of the approximating
equations. We illustrate the results in several examples and discuss extensions
to the analysis of stability of multisynchronous states in networks with complex
architectures.

PACS numbers: 05.45.Xt, 02.30.Mv

1. Introduction

Networks of coupled oscillators are used to describe a variety of systems in science and
engineering, such as Josephson junction arrays, generators in power plants, firefly populations
and heart pacemaker cells. Of particular interest are solutions in which the network or
subpopulations within the network oscillate synchronously. The analysis of the stability of
and transition to a synchronous state can be very complex and has received much attention
[1–3].

Recent applications to nanoelectromechanical systems (NEMS) [4], and beam steering
devices in telecommunications [5], showed that important advances can be made by studying
these problems perturbatively. It is therefore essential to have appropriate mathematical tools
for such an analysis. We propose a perturbative method, based on normal-form techniques
[6–8], which is in many respects superior to those commonly used to study synchrony in
oscillator networks.
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Figure 1. Globally coupled oscillators. Load parameters are rescaled with respect to the number
of oscillators, so the values of load resistance, capacitance and inductance are NR,C/N and NL,
respectively.

The method is intuitive and helps us distinguish between contributions to the dynamics
arising from the network configuration and the internal structure of individual oscillators.
Because of this it is possible to carry out calculations without having to specify the
nonlinearities explicitly. Also, the approach based on normal forms is rigorous, and the
validity of approximations is known a priori. On the other hand, for methods commonly used
in the physics literature, mathematical justification is often non-trivial, and must be performed
a posteriori [8, 9].

There are a number of other advantages that the normal-form approach brings to the table.
The approximating equations to the original system are obtained by examining a collection of
algebraic conditions. This procedure can be formulated in an algorithmic form and automated,
which is of particular importance when approximations of higher order in the small parameter
are needed. Computer codes for determining normal forms to any order already exist for some
problems in celestial mechanics.

Standard methods, such as averaging, usually require centre manifold reduction to be
performed first [10]. We will show that the centre manifold reduction is obtained naturally
in the normal form of the equations of motion. Moreover, the change of coordinates leading
to the normal form can be used to approximate the centre manifold, the invariant fibration
over the centre manifolds and a number of nearly conserved quantities of the equations to any
order. As a result, the normal form method offers a deeper insight into the geometric structure
of the approximating equations.

Related approaches can be found in the literature [11, 12]. In particular, the method
of normal forms has been used in [13] to obtain reduced equations for oscillators close to a
bifurcation. Our approach differs in that we do not consider only small amplitude oscillations,
but general weakly nonlinear oscillators. Moreover, the coupling in the present case results in
negative eigenvalues in the linear part of the vector field.

In this paper we look at systems of globally coupled identical oscillators illustrated in
figure 1. This configuration is commonly used for wave generators in order to increase the
output power (see e.g. [14]). When oscillators are synchronized the power of emitted waves
scales as a square of the number of coupled units. Therefore, it is important to determine
couplings that lead to synchronous behaviour. Our analysis results in a general expression
for the onset of synchronization in the network and we recover recent results for an array of
van der Pol oscillators [15] as a special case. Furthermore, we find, somewhat surprisingly,
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that the coupling can induce synchronous oscillations even in a network of weakly nonlinear
systems which are unstable and do not oscillate when uncoupled. The method itself can be
easily extended to treat more complex networks and other types of coherent solutions. In order
to keep our presentation streamlined we do not discuss these problems here.

This work is motivated by previous studies of synchrony in Josephson junction arrays
[16–19], where a series of junctions was shunted with an RLC load (figure 1). Dhamala and
Wiesenfeld introduced a heuristic, perturbative method in which an approximate stroboscopic
map was constructed [19]. For an appropriately chosen strobing period T, the synchronous
solution corresponds to a fixed point of this stroboscopic map and the stability of the
synchronous state can be determined from the eigenvalues of its linearization. A remarkable
consequence of this approach is a unified synchronization law for capacitive and noncapacitive
junctions, two cases which were believed to have different dynamics. An extension of
the method and an application to the study of synchrony in an array of van der Pol oscillators
was given in [15].

The stroboscopic map approach, like most classical singular perturbation methods,
consists of identifying and taming secular terms in the naive approximating solution of the
weakly nonlinear system. The general structure of the reduced equation obtained using this
approach is difficult to know before the calculations are carried out. On the other hand,
the normal form method enables us to carry out calculations without having to specify the
nonlinearity explicitly, or calculate the approximate strobing time T and hence study a much
broader class of problems.

The paper is organized as follows: in section 2 we briefly review the theory of normal
forms and illustrate it in the case of a van der Pol oscillator. These ideas are applied in section 3
to compute the normal form of the equation describing a network of weakly nonlinear
oscillators. The stability of the synchronous solution in this network is analysed in section 4.
Several examples illustrating these ideas are given in section 5. Finally, in section 6 we discuss
possible extensions of our work to different networks.

2. Normal form analysis

In this section we give an outline of the application of the method of normal forms to the
analysis of weakly nonlinear systems in a general setting. The method has been discussed in
[7, 6], and a mathematical analysis is given in [20, 8]. Consider a weakly nonlinear ODE of
the form

x′ = Ax + ε
∑
α,i

cα,ixαei = Ax + εf(x), (1)

where x ∈ R
n, A is an n × n constant matrix and ei is the ith unit vector. We use standard

multi-index notation, so that α ∈ N
n and xα = x

α1
1 · · · xαn

n . We emphasize that, in contrast
with local normal form theory, f(x) may contain any monomial in x, including linear terms.

A goal of normal form theory is to remove terms of O(ε) in equation (1) by a near-identity
change of variables

x = y + εg(y), g : R
n → R

n, (2)

where g(y) is a polynomial. In terms of the new variables (1) becomes

y′ = Ay + ε

(∑
α,i

cα,iyαei − [A, g](y)

)
+ O(ε2) (3)
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where the Lie bracket [A, g](y) equals Dg(y)Ay − Ag(y). To remove the nonlinear terms at
O(ε) in (3), we need to solve the equation

[A, g](y) =
∑
α,i

cα,iyαei . (4)

Since this equation is linear in g, it is equivalent to the finite family of equations

[A, gα,i](y) = cα,iyαei . (5)

If A is diagonal, the eigenvectors of [A, ·] are the homogeneous polynomials, since

[A, yαei] = �α,iyαei,

where

�α,i =
∑

k

αkλk − λi = 〈α, λ〉 − λi, (6)

and λi are eigenvalues of matrix A. It follows that, if �α,i �= 0, equation (5) has the solution

gα,i (y) = cα,i

�α,i

yαei .

On the other hand, if �α,i = 0, equation (5) does not have a solution and we say that the
monomial yαei is resonant. Therefore, only nonlinear monomials yαei such that �α,i �= 0
can be removed at first order in ε by a near identity coordinate change of the form (2).

In particular, we can split the nonlinearity f(y) in (1) into a resonant part fR(y) =∑
�α,i=0 cα,iyαei and a nonresonant part fNR(y) = ∑

�α,i �=0 cα,iyαei , so that f(y) = fR(y) +
fNR(y). By setting g(y) = ∑

�α,i �=0 gα,i (y), the change of coordinates (2) leads to the equation

y′ = Ay + εfR(y) + O(ε2). (7)

We emphasize that to obtain the normal form of equation (1) to O(ε), we simply identify
and remove all resonant terms, that is all monomials comprising fNR(x). The preceding
argument shows that this can be done at the expense of introducing terms of O(ε2) into the
equation. If the O(ε2) terms are neglected in (7), a truncated normal form is obtained. To
continue this process and obtain normal forms to higher order in ε, it is necessary to compute
the O(ε2) terms that are introduced at this step explicitly. This is equivalent to the observation
that the computation of a local normal form near a singular point to second order may affect the
cubic terms and the computation needs to be carried out order by order (see [9], for instance).

The following theorem shows that the truncated normal form provides a good
approximation to the original equations:

Theorem 1 [8]. Consider the ordinary differential equation

x′ = Ax + ε
∑
α,i

fα,i (t)xαei, x(0) = x0

where A is a diagonal and has eigenvalues with non-positive real part. Construct the truncated
normal form

y′ = Ay + εfR(y),

and let x(0) = y(0). Then there is a T = T (x(0)) > 0 such that the solutions of the two
equations satisfy |x(t) − y(t)| = O(ε) for all t ∈ [0, T /ε] and ε sufficiently small.
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Remark 1. When the truncated equations contain hyperbolic invariant structures, the
conclusions of theorem 1 often hold for all time along their stable directions [21]. Normal form
theory can be extended to study nondiagonalizable matrices [9], nonhomogeneous equations
with nonlinearities that are not finite sums of monomials and higher order approximations in
ε [8, 22]. The main ideas presented here are similar in these cases. We present the simplest
case in order to keep technicalities at a minimum.

Note that, by construction [A, fR] = 0. It follows that the truncated normal form is
equivariant under the flow of the unperturbed equation x′ = Ax. Moreover, the resonant
monomials and hence the structure of the truncated normal form, are completely determined
by the eigenvalues of A. This allows us to prove the following proposition which will be
useful in the following sections.

Proposition 1. Suppose that matrix A in (1) is diagonalizable, has m purely imaginary
eigenvalues λi and that other eigenvalues νi have negative real part. The system (1) then can
be written as

x′
1 = A1x1 + εh1(x1, x2) x′

2 = A2x2 + εh2(x1, x2)

where A1 = diag(λ1, . . . , λm), A2 = (νm+1, . . . , νn). If the nonlinear terms h1 and h2 are
polynomials, the truncated normal form of this system has the general form

y′
1 = A1y1 + εhR

1 (y1) (8)

y′
2 = A2y2 + εhR

2 (y1, y2) (9)

where hR
2 (y1, 0) = 0.

Proof. A term xα
1 xβ

2 ei with i � m is resonant if �α,i = ∑m
j=1 αjλj +

∑n
j=m+1 βjνj − λi = 0.

Since the eigenvalues νi have negative real part and enter the sum with the same sign, this
condition can be satisfied only if all βj = 0.

Similarly, a term xα
1 ei for i > m is resonant only if �α,i = ∑M

j=1 αjλj − νi = 0. This
equation cannot hold. Hence all resonant monomials in (9) contain a nonzero power of y2,j

for some j , and evaluate to 0 when y2 = 0. �

Although proposition 1 is simple to prove, it says much about the structure of the truncated
normal form. The fact that hR

2 (y1, 0) = 0 means that the hyperplane y2 = 0 is invariant under
the flow of (8)–(9). In fact, the hyperplane y2 = 0 is the centre manifold of this system and
hence (8) trivially provides the reduction of the truncated normal form equation to the centre
manifold. Therefore, it is unnecessary to compute the centre manifold explicitly to obtain the
reduced equations.

Furthermore, since y2 does not occur on the right-hand side of (8), the fibration given by
y1 = const is also invariant under the flow. To obtain an O(ε) approximation of the centre
manifold, and the invariant fibration over the centre manifold in the original coordinates, it
is sufficient to invert the near identity transformation (2) used in obtaining the normal form
equation. In fact, there are typically other easily identifiable quantities that are conserved
by the flow of the truncated normal form, and provide adiabatic invariants for the original
equations [9, chapter 5].
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Table 1. Resonance condition.

Term z z̄ z3 z2z̄ zz̄2 z̄3

α (1, 0) (0, 1) (3, 0) (2, 1) (1, 2) (0, 3)
�α,1 0 2i −2i 0 2i 4i
�α,2 −2i 0 −4i −2i 0 2i

2.1. Example: van der Pol oscillator

As a simple, illustrative example, and to introduce results that will be used in section 5, we
consider the van der Pol equation

x ′′ − εx ′(1 − x2) + x = 0. (10)

We can rewrite system (10) in the variables

z = x + ix ′, z̄ = x − ix ′ (11)

to obtain

z′ = −iz +
ε

8
(4z − 4z̄ − z3 − z2z̄ + zz̄2 + z̄3), (12)

z̄′ = iz̄ − ε

8
(4z − 4z̄ − z3 − z2z̄ + zz̄2 + z̄3). (13)

This system is in the form that can be analysed using the ideas discussed in section 2. The
eigenvalues of the linear part are λ1 = −i and λ2 = i. The resonant terms can be computed
using the condition �α,i = 0 where �α,i is defined in equation (6).

As noted in the discussion following the derivation of equation (7), the truncated normal
can be obtained simply by removing the resonant monomials in (12)–(13). From table 1 we
find that the resonant terms in (12) are z and z2z̄, and the resonant terms in (13) are their
complex conjugates z̄ and zz̄2, as expected. Therefore, there exists a near identity change of
coordinate in which (12)–(13) have the form

z′ = −iz +
ε

2
z − ε

8
z2z̄ + O(ε2), (14)

and its complex conjugate.
As noted in section 2, equation (14) is equivariant under the flow of the unperturbed

equation, which is a pure rotation of the real plane. It follows that the right-hand side of any
weak perturbation of the equation z′ = −iz, z̄′ = iz cannot depend on the angular variable
when expressed in polar coordinates. Indeed, (14) takes the form

R′ = ε

2
R

(
1 − 1

4
R2

)
, θ ′ = 1.

in polar coordinates. The same procedure can be used to obtain higher order normal forms,
see [8].

Remark 2. Strictly speaking, new coordinates are introduced in obtaining equation (14).
To keep notation at a minimum, we name these new variables z and z̄ as well. A similar
convention is used in the rest of the paper.
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3. Globally coupled networks

In this section we use the normal form method to study a network of identical, weakly nonlinear
oscillators, described by the equation x ′′

i + xi + εh(xi, x
′
i ) = 0 when uncoupled. Here ε is a

small parameter, and the nonlinear term h(xi, x
′
i ) is assumed to be a polynomial. The elements

in the network are globally coupled by a linear load (figure 1). The coupling is weak and of
the same order as the nonlinearity. While this is not the most general example of a globally
coupled network, these assumptions have been chosen to simplify the presentation and can be
relaxed. Equations of motion for this system can be written as

x ′′
k + εh(xk, x

′
k) + xk = q ′ (15)

µ1q
′′ + µ2q

′ + q = ε
κ

N

N∑
j=1

xj . (16)

Here we follow the notation introduced in [15, 16, 18, 19], where µ1 and µ2 are control
parameters, and can be understood as the inductance and the resistance of the coupling load,
respectively. The goal of our calculation is to find load parameters that will ensure synchrony
in the network.

In order to bring the equations of motion to normal form, we first have to diagonalize
their linear parts. To make the procedure more intuitive we introduce complex variables
zk = xk + ix ′

k and z̄k = xk − ix ′
k , and denote q ′ = p. The system (15)–(17) then becomes

z′
k = −izk + ip − iεf (zk, z̄k) (17)

z̄′
k = iz̄k − ip + iεf (zk, z̄k) (18)

where f (z, z̄) = h[(z + z̄)/2, (z − z̄)/2], and

q ′ = p (19)

p′ = −µ2

µ1
p − 1

µ1
q + ε

κ

2µ1N

N∑
j=1

(zk + z̄k). (20)

This system can be written in matrix form as

z′ = Az + iεf(z) (21)

where z = (z1, z̄1, z2, . . . , z̄N , q, p),

A =




−i 0 0 0 0 0 i
0 i 0 0 0 0 −i
0 0 −i 0 0 0 i
0 0 0 i 0 0 −i

. . .
...

0 0 0 0 i 0 −i
0 0 0 0 0 0 1
0 0 0 0 0 − 1

µ1
−µ2

µ1




(22)
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and

f(z) =

−f (z1, z̄1), f (z1, z̄1),−f (z2, z̄2), . . . , f (zN, z̄N ), 0,− iκ

2µ1N

∑
j

(zj + z̄j )




T

.

(23)

Here T denotes the transpose and f(z) is a column vector.
Finally, we diagonalize the matrix A, by introducing another coordinate change w =

B−1z, where B−1AB = DA is diagonal. In the new coordinates the equations of motion have
the form

w′ = B−1Az + iεB−1f(z) = DAw + iεB−1f(Bw). (24)

The matrix B can be computed using elementary linear algebra. Its actual form is not of
interest, and we therefore suppress it. In component form (24) becomes

w′
k = −iwk − iεf (wk + b1u + b2v, w̄k + b̄1u + b̄2v)

+ ε
κ

2ZN
eiδ

∑
j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)] (25)

w̄′
k = iw̄k + iεf (wk + b1u + b2v + w̄k + b̄1u + b̄2v)

+ ε
κ

2ZN
e−iδ

∑
j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)] (26)

u′ = ν2N+1u − i(1 − C)
κ

4µ1N

∑
j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)] (27)

v′ = ν2N+2v − i(1 + C)
κ

4µ1N

∑
j

[wj + w̄j + v(b2 + b̄2) + u(b1 + b̄1)] (28)

where b1,2 = 2µ1
/(

2µ1 + iµ2 ∓ i
√

µ2
2 − 4µ1

)
, C = µ2

/√
µ2

2 − 4µ1, Z =
√

(1 − µ1)
2 + µ2

2
is the impedance, and δ = arcsin(µ2/Z) is the phase shift on the load. Variables u and
v are obtained from q and p. Note that matrix A has 2N purely imaginary eigenvalues
λk = −i, λk+1 = i, k = 1, 3, . . . , 2N −1, corresponding to the first 2N entries on the diagonal
of B−1AB. The last two eigenvalues

ν2N+1,2 =
−µ2 ±

√
µ2

2 − 4µ1

2µ1
(29)

have negative real part.
Since the linear part of (25)–(28) is diagonal, it is now straightforward to identify

nonresonant terms, as discussed in section 2. First, from proposition 1, we find that all
terms containing powers of u or v can be removed at O(ε) in the equations for wk and w̄k

using a near identity change of coordinates, so (25)–(26) reduce to the equations on the centre
manifold

w′
k = −iwk − iεf (wk, w̄k) + ε

κ

2ZN
eiδ

∑
j

(wj + w̄j ) + O(ε2), (30)

w̄′
k = iw̄k + iεf (wk, w̄k) + ε

κ

2ZN
e−iδ

∑
j

(wj + w̄j ) + O(ε2). (31)
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While the load variables do not enter the final approximating equations, the form of the load
equation was important in obtaining the diagonalization and will therefore be reflected in the
final approximation.

We can use the normal form to compute the transients, as well as the asymptotic state
of a solution. However, since we are interested in the stability of the synchronous state, we
only consider the reduced equations on the centre manifold u = 0, v = 0, and therefore drop
equations (27)–(28) from further consideration.

The normal form of (25)–(26) is obtained by computing the remaining resonant terms.
Those due to the nonlinearity f are determined as follows: let f R

w be the resonant part of f

in the equation for the individual oscillators, w′ = −iw − iεf (w, w̄), and f R
w̄ the resonant

part in w̄′ = iw̄ + iεf̄ (w, w̄). A simple computation shows that f R
w = wkφ

R(wkw̄k) and
f R

w̄k
= w̄kφ̄

R(wkw̄k), where φR is a polynomial in ww̄. Generally, the coefficients of φR are
complex.

It remains to determine the resonant terms that are due to the coupling term
κ eiδ/(2ZN)

∑
j (wj + w̄j ). Obviously, monomials wj are resonant in (30), while monomials

w̄j are resonant in equations (31). Keeping only the resonant terms in the (30)–(31), we obtain
the normal form to O(ε):

w′
k = −iwk + ε


wkφ

R(wkw̄k) +
κ

2ZN
eiδ

∑
j

wj


 + O(ε2) (32)

w̄′
k = iw̄k + ε


w̄kφ̄

R(wkw̄k) +
κ

2ZN
e−iδ

∑
j

w̄j


 + O(ε2). (33)

Since the normal form equations are equivariant under the flow of the unperturbed system,
it is again natural to rewrite them in polar coordinates, wk = rk e−iθk . We obtain

r ′
k = εrkR(rk) + ε

κ

2ZN

∑
j

rj cos(θk − θj + δ) + O(ε2) (34)

θ ′
k = 1 − ε�(rk) − ε

κ

2ZN

∑
j

rj

rk

sin(θk − θj + δ) + O(ε2), (35)

where R = (φR + φ̄R)/2 is the real and � = (φR − φ̄R)/2i is the imaginary part of φR. Note
that the fact that the right-hand side of (34) depends only on the phase differences is a
consequence of the equivariance of the truncated normal form under the transformation
θ → θ + C, where θ = (θ1, θ2, . . . , θN) and C = (c, c, . . . , c).

Remark 3. We could also use a centre manifold reduction to remove the variables u and v

from equations (25)–(26) [10]. This would add another step to the calculation. If the transient
dynamics of initial states off the centre manifold is of interest, in addition it is necessary to
compute the stable fibration over the centre manifold. The normal form method considerably
simplifies these computations. As noted in section 2, the truncated normal form is a skew
product, and provides both the reduction of the equations to the centre manifold, and an
approximation for the flow in the transversal direction [23].

4. Existence and stability of the synchronous state

The truncated normal form obtained from (34)–(35) by neglecting O(ε2) terms is much easier
to analyse than the original equations (15)–(16). It is straightforward to find the inphase
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solution for the truncated system and its stability analytically. Furthermore, if the truncated
system has a stable synchronous solution, so does the full system (15)–(16).

Due to all-to-all coupling, the truncated normal form given by (34)–(35) is equivariant
under all permutations of the oscillators, as well as the action of the group T 1 given by
θi → θi + C for all i. As a consequence, a number of phase locked states are forced to exist
[12]. In this section we consider the stability of the synchronous state r1 = r2 = · · · rN = r ,
and θ1 = θ2 = · · · = θN . The stability of other phase locked states can be analysed similarly.

Assuming that rk = r , and θk − θj = 0 for all k and j , then equation (34) implies that r
must satisfy

rR(r) + r
κ

2Z
cos δ = 0. (36)

Remark 4. The amplitudes of the uncoupled oscillators are given by solutions of R(r) = 0,
while in a synchronously oscillating network the amplitudes of the oscillators are given as
solutions of (36) in terms of the coupling strength κ and properties of the coupling load. It
is possible that R(r) = 0 has only r = 0 as a solution, while (36) has nonzero solutions for
certain values of κ, Z, δ. In such examples, the uncoupled systems do not oscillate, while the
network can exhibit synchronous oscillations (see section 5.3).

Due to the T 1 equivariance of the system, the Jacobian is constant along the synchronous
solution. Therefore the Floquet exponents equal the eigenvalues of the Jacobian. At the
synchronous solution determined by θk − θj = 0 and (36) they equal

λ1 = 0 (37)

λ2 = εrR′(r) (38)

λn,n+1 = εrR′(r) − ε
κ

Z
cos δ ± ε

√
(rR′(r))2 −

( κ

Z
sin δ

)2
+ 2r�′(r)

κ

Z
sin δ (39)

where n = 3, 5, 7, . . . , 2N − 1. If r satisfies (36) and the λi>1 have nonzero real part then
the system obtained by truncating (34)–(35) has a weakly hyperbolic limit cycle with ri = r

and θi = θj for all i and j . If the limit cycle is stable the truncated system is synchronized.
Eigenvalues (38)–(39) are expressed in terms of the coupling load parameters and implicitly
define the region corresponding to stable synchronous behaviour in parameter space.

It remains to show that the stability of the synchronous solution in the truncated system
implies the existence and stability of nearby synchronous solutions in the original system
(15)–(16). Let �j−1,j = θj − θj−1 for j = 2, . . . , N , and let χ = (�1,2, . . . ,�N−1,N ,

r1, . . . , rN). The only O(1) terms in equations (34)–(35), are the unit terms in (35). By
definition of �j−1,j , these terms do not occur in the differential equation for χ . It follows that
in the new coordinates (χ, θ1), equations (34)–(35) have the form

χ ′ = εF1(χ) + ε2F2(χ, θ1) θ ′
1 = 1 + εG1(χ) + ε2G2(χ, θ1). (40)

The explicit form of F1, F2,G1, and G2 is not of importance.
To study the stability of the synchronous state χ0 = (0, r), we note that the eigenvalues of

εDχF1(χ0) are given by (38)–(39) when r = (r, r, . . . , r) and r satisfies (36). The following
proposition shows that if the eigenvalues λi have nonzero real part then they completely
determine the stability of the synchronous state for the full system (15)–(16).
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Proposition 2. If F1(χ0) = 0, and DχF1(χ0) has eigenvalues with nonzero real part in (40),
then there exists an ε0, such that system (40) has a limit cycle O(ε) close to the limit cycle
of the unperturbed system, obtained from (40) by setting F2 = G2 = 0, for all ε < ε0. The
Floquet exponents of the perturbed limit cycle agree with the eigenvalues of DχF(χ0) to O(ε).

Proof. This is a consequence of standard results about near identity changes of coordinates
for systems with a single frequency. See [24 chapter 1.22] and references therein. �

Proposition 3. Assume that a nonzero solution r of equation (36) exists. If the eigenvalues
given in (38)–(39) have negative real part, then (15) has a stable, synchronous periodic
solution. If one of the eigenvalues has positive real part, this periodic solution is unstable.

Proof. As a consequence of proposition 2, depending on the real part of the eigenvalues in
(38)–(39) there is either a stable or unstable synchronous solution of system (25)–(28). Since
the change coordinates Bw = z affects all of the pairs of coordinates (wk, w̄k) in the same
way, a synchronous solution in the w coordinates corresponds to a synchronous solution in
the original z coordinates. The stability properties of this solution are preserved under a linear
change of coordinates. �

Remark 5. Theorem 1 only states that the truncated normal form provides an O(ε)

approximation on timescale ofO(1/ε) and typically this approximation does not hold on longer
timescales. Nevertheless, proposition 2 implies that the limit cycle of the truncated normal
form approximates the limit cycle of the original system to O(ε), since the approximation of
the amplitude χ is valid for all time.

Remark 6. In [15], a stroboscopically discretized system was used in a heuristic argument to
obtain similar results in the case of van der Pol oscillators. There it was necessary to determine
the angular frequency of the inphase solution to O(ε) in order to find appropriate strobing
period. The angular frequency of the periodic solution can also be estimated from (34)–(35)
up to second order as

ω = 1 − ε
(
�(r) +

κ

2Z
sin δ

)
. (41)

5. Examples

The synchronization condition for the array of globally coupled oscillators is obtained from
(38)–(39) by setting λi < 1 for all i > 1 and can be expressed in terms of control parameters
µ1 and µ2. In general, our method allows us to do a single calculation for a certain network
configuration and then obtain results for a variety of different oscillators in a straightforward
fashion. To find the synchronization condition for a specific oscillator type it suffices to
find the function φR which characterizes the resonant terms in the equation of motion of the
uncoupled oscillator. We illustrate this in several examples and compare our approximating
solutions with numerical results. Agreement between analytical and numerical calculation is
good even when using only first order corrections in ε. We retrieve a result from [15] as a
special case of our general result.

5.1. Van der Pol oscillator arrays

Consider a network of globally coupled van der Pol oscillators described in section 2.1.
From (14) we find that the resonant terms are described by φR = 1/2 − ww̄/8, and
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0 1 2 3 4 5
µ1

0.6

0.8

1

1.2

Λ

(a)

0 1 2 3 4 5
µ1

0.9

0.95

1

1.05

1.1

1.15

Λ

(b)

Figure 2. Floquet multipliers for a van der Pol oscillator array. The solid line represents analytical
result, while dots represent results obtained from numerical calculations. The coupling parameters
are κ = 1, ε = 0.1 and (a) µ2 = 0.8, (b) µ2 = 1.5.

hence R(r) = 1/2 − r2/8,�(r) = 0. From (36) we find that the inphase state exists
for r = 2

√
1 + κ cos δ/Z. By substituting expressions for R(r) and �(r) in (38) and (39) we

find the Floquet exponents for the synchronous solution

λ2 = −ε

2

(
1 +

κ

Z
cos δ

)
(42)

λn,n+1 = −ε

2

(
1 + 2

κ

Z
cos δ

)
± ε

2

√(
1 +

κ

Z
cos δ

)2
−

( κ

Z
sin δ

)2
. (43)

In order to test our results we evaluate Floquet multipliers3 numerically and compare them to
the values estimated from (43). The results are O(ε) close (figure 2).

5.2. Van der Pol–Duffing equation

In a recent study of micromechanical and nanomechanical resonators models using
parametrically driven Duffing oscillators [25] and van der Pol–Duffing oscillators [4] are
proposed. The van der Pol–Duffing equation

x ′′ + x − ε(1 − x2)x ′ − εαx3 = 0, (44)

is obtained from the van der Pol equation by an addition of a cubic term. By switching to
complex coordinates (11) and writing (44) in normal form we obtain

z′ = −iz +
ε

8
(4z − z2z̄ + i3αz2z̄)

z̄′ = iz̄ − ε

8
(−4z̄ + zz̄2 + i3αzz̄2).

The resonant part of the nonlinearity is given by φR(r) = (4 − r2 + i3αr2)/8. The real part
of φR is the same as in the case of van der Pol oscillator, so this system has the same inphase
solution. Substitute the real part R(r) = 1/2 − r2/8 and imaginary part �(r) = 3αr2/8 of

3 In these comparisons we use Floquet multipliers for convenience, since they are easier to handle numerically. The
Floquet multipliers are given by �i = e2πλi /ω + O(ε2), where ω is given by (41).
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Figure 3. Floquet multipliers for a van der Pol–Duffing array. Coupling parameters are
α = −0.2, κ = 1, ε = 0.1 and (a) µ2 = 0.8, (b) µ2 = 1.5.

φR in (38) and (39) to find the approximate Floquet exponents

λ2 = −ε

2

(
1 +

κ

Z
cos δ

)
(45)

λn,n+1 = −ε

2

(
1 + 2

κ

Z
cos δ

)

± ε

2

√(
1 +

κ

Z
cos δ

)2
−

( κ

Z
sin δ

)2
+ 3α

κ

Z

(
2 sin δ +

κ

Z
sin 2δ

)
. (46)

The numerical simulations (figure 3) support our result. Note that it follows from (20) that
our approximations can be expected to break down for small values of µ1.

5.3. Synchronizing sources and sinks

As noted in remark 4, it is possible to turn a network of systems with flows that have only
a source (or sink) at the origin into a network of synchronous limit cycle oscillators with an
appropriate coupling. Consider a dynamical system described by

x ′′ + x − εx ′
[

4x2

(
1 − 3.6√

x2 + x ′2

)
+ 3.32

]
= 0. (47)

Each individual system has only an unstable fixed point at the origin and no other repellers or
attractors. Coupling these systems as in (15)–(16), and switching to complex variables (11),
gives the following equations of motion,

z′ = −iz + iεf (z, z̄) (48)

z̄′ = iz̄ − iεf (z, z̄) (49)

where the nonlinear term is

f (z, z̄) = z − z̄

2i

[
(z + z̄)2

(
1 − 3.6√

zz̄

)
+ 3.32

]
. (50)
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Figure 4. The radius of the periodic, inphase solution is obtained by solving (36). For an array of
elements (47) it is given by the intersection of the curve rR(r) = r/2(r2 − 3.6r + 3.32) and the
line −κ cos δ/(2Z)r . If the slope of the line is too small only the trivial solution r = 0 exists, and
the system does not exhibit limit cycle oscillations.
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Figure 5. Phaseplane (left) and time diagram (right) of inphase limit cycle solution for coupled
sources (47). The dashed line represents the solution for the truncated normal form system and the
solid line numerical solution for the full system.

If we keep resonant terms only, (48) and (49) become

z′ = −iz + εzφR(zz̄) (51)

z̄′ = iz̄ + εz̄φR(zz̄) (52)

with φR = R(r) = 1/2(zz̄ − 3.6
√

zz̄ + 3.32).
From (36) we find that the limit cycle solution does not exist for −κ cos δ/(2Z) < 0.08.

Below that value the coupled elements behave as unstable foci, which can be easily checked
numerically. As −κ cos δ/(2Z) increases above 0.08 the system undergoes a supercritical
saddle-node bifurcation of limit cycles, in which a stable and an unstable inphase limit
cycle are created. These two solutions are represented as the intersection of the curve
R = r/2(r2 − 3.6r + 3.32) and the line R = −κ cos δ/(2Z)r in figure 4. For a suitable
choice of coupling parameters it is possible to obtain inphase limit cycle solutions for
the array of sources. In figure 5 we show oscillations of an element in the array, when
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Figure 6. Floquet multipliers for coupled sources. κ = 1, ε = 0.1 and (a) µ2 = 0.8, (b) µ2 = 1.1.

the coupling parameters are set to κ = 1, µ1 = 1.2 and µ2 = 0.8. The Floquet exponents
for both limit cycles are readily obtained from (39). These results agree with numerical
calculations to the expected error. In figure 6 we present results for the ‘stable’ cycle.

We note that a direct extension of the method discussed in the previous sections was used
to derive these results, since the nonlinear term in (47) is not a polynomial (see [22]).

6. Conclusion

In our study of synchrony in globally coupled oscillator arrays we introduce a normal form
based method, which has a number of advantages over methods commonly found in the
physics literature. The method provides a clear and mathematically rigorous way of finding
the onset of synchronization in the array with respect to changes in the control parameters. It
allows for an easy distinction between contributions to the dynamics coming from the network
configuration and those coming from the internal structure of the network elements. As a
consequence, we are able to carry out calculations for particular network architectures without
having to specify the exact form of the nonlinearities in the individual elements.

To apply these results to specific weakly nonlinear oscillators it is only necessary to find
the function φR, which characterizes the resonant part of the nonlinearity and substitute it in
the general solution thus obtained. The function φR does not depend on the coupling scheme,
and is easily derived from the equations for the uncoupled systems. It is therefore tempting to
think of synchronization classes as different systems may lead to the same φR.

Although we have chosen a very specific linear coupling in our exposition, the method
can be applied to a variety of network configurations simply by retracing the steps we outlined.
A similar calculation can be carried out even if there is a weak nonlinearity in the coupling
equation (16) itself. Moreover, the method can be extended to higher orders in the small
parameter in a straightforward fashion and the procedure can be automated.

The analysis of the synchronous solution of the network (15)–(16) was particularly simple
due to its SN symmetry. When the network has less symmetry, or only local symmetries
(see [26]), a similar reduction can be performed. In such networks one expects
polysynchronous solutions, in which groups of oscillators within the network oscillate
synchronously. One can further expect to obtain a pair of equations for each cluster of
oscillators in the network [12]. The stability of these clusters can then be analysed in a manner
similar to that introduced in this paper.
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Although we have not treated the case of Josephson junctions, a similar analysis can also
be performed. In fact we believe that coherent behaviour in networks of various dynamical
systems can be studied using the method of normal forms and intend to investigate this in the
future.
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